being characteristic of cis-M(bipy)₂X₂⁺ and a single band or lack of complexity being characteristic of the trans isomer. As shown in the Results, this criterion has given incorrect assignments. It is probable that the differences observed in this region result from specific crystal-packing effects. Solution infrared spectra of these compounds, which would eliminate these effects, cannot be obtained due to low solubilities in appropriate solvents.

The orginal cis assignment³ of $[Ir(phen)_2Cl_2]Cl \cdot 3H_2O$ prepared by a fusion process was confirmed by optical resolution work.²³ However, Gillard and Heaton¹⁴ were not able to effect resolution using the same resolving agent on their analogous product. The later compound is assigned the cis configuration on the basis of its published powder pattern (Table IV) and our analysis here. Apparently experimental difficulties account for the unsuccessful resolution.

The insensitivity of the powder patterns of bisphen and bis-bipy complexes to M, X, Y, and n is probably due to the bulkiness of the bidentate nitrogen ligands. The principal groups controlling the crystal packing are the phen and bipy ligands and not the comparatively small halogen and nitrate ions or water. This empirical observation may be quite useful in assigning configurations to more complicated systems.

The work reported here points out the problems inherent in assigning structures to analogous systems. Techniques, such as infrared and visible–ultraviolet spectroscopy, may work well in one system (ethylenediamine) and not in another (bipy). Application of these methods, proven in simple systems, to complex molecules of biochemical interest must be done with caution.

Acknowledgments.—Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and to the Research Corp. for partial support of this research. The NSF Undergraduate Research Participation program has provided support for R. R. G.; C. E. W. thanks NASA for fellowship support. We also wish to thank A. J. Maeland and W. T. Edwards of this department for helpful comments and suggestions.

(23) J. A. Broomhead and W. Grumley, J. Inorg. Nucl. Chem., 29, 2126 (1967).

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104

Fluorophosphine Ligands. VIII. The Chemistry of Difluorophosphine Oxide

BY LOUIS F. CENTOFANTI AND ROBERT W. PARRY*

Received January 19, 1970

 F_2POPF_2 has been found to interact with amines and alcohols in a two-step process. The reaction with amines gives PF_3 , PF_2NR_2 , and $NR_2H_2HFPO_2$ and with alcohols gives PF_3 , $HFFO_2R$, and $HFPO_2R$. The reaction of F_2POPF_2 with N_2F_4 gives N_2 , PF_5 , $PF_6O_2R_3$, and colored products. PF_2HO has been found to react with amines to give PF_3 and $NR_{4-x}H_x$ + $HFPO_2^-$, with PF_2OR to give $PFHO_2R_3$, PF_3 , and $HFPO_2H_3$, with $PF_2N(CH_3)_2$ to give PF_3 , PF_2OPF_2 , and $N(CH_3)_2H_2$ + $HFPO_2^-$, and with BF_3 to give a weakly bonded adduct PF_2HOBF_3 . PF_2HOBF_3 is observed to decompose to BF_3 and $HFPO_2HBF_3$. No reaction is observed between B_2H_6 and PF_2HO . A mechanism for the various reactions is discussed and explained in terms of association found in PF_2HO .

Introduction

Diffuorophosphine oxide was first observed by Treichel, Goodrich, and Pierce in the decomposition of $HPF_{4.}$ Charlton and Cavell² and Centofanti and Parry³ were able to prepare the compound in significant enough quantity to characterize the molecule. Difluorophosphine oxide is rather unstable as a liquid and undergoes complete decomposition in about 2 hr.³ It is believed⁴ that this decomposition results from association found in the condensed phases. Investigation of the chemistry of PF_2HO has shown that PF_2HO is a very reactive molecule. The work is described herein.

Discussion

1. Reaction of HX (X = OR, NR₂, etc.) with F_2POPF .—It was thought that the reaction of F_2POPF_2 with various proton sources should result in the preparation of PF_2HO and PF_2X , by a reaction similar to that observed with HBr: PF_2OPF_2 + HBr $\rightarrow PF_2HO + PF_2Br$. The general reaction would then be PF_2OPF_2 + HX $\rightarrow PF_2HO + PF_2X$.

Two proton sources were studied. In both cases the results can be explained in terms of the general reaction given above, followed by a second reaction between PF_2HO and PF_2X .

^{*} To whom correspondence should be addressed at the Department of Chemistry, University of Utah, Salt Lake, City, Utah 84112. (1) P. M. Treichel, R. A. Goodrich, and S. B. Pierce, J. Amer. Chem.

Soc., 89, 2017 (1967).

⁽²⁾ T. L. Charlton and R. G. Cavell, Inorg. Chem., 6, 2204 (1967).

⁽³⁾ L. F. Centofanti and R. W. Parry, ibid., 7, 1005 (1968).

⁽⁴⁾ L. F. Centofanti and R. W. Parry, ibid., 9, 744 (1970).

The intermediate of F_2POPF_2 with HX would be expected to be similar to the trigonal bipyramid postulated for PF_2OPF_2 and HBr or PF_3NR_3 .³ Cleavage would occur producing PF_2OH (rearrangement to

 PF_2HO would occur immediately) and PF_2X . The secondary reaction between PF_2HO and PF_2X could then occur.

Ethyl alcohol and F_2POPF_2 react immediately on warming to give PF_2HO , $PF_2OC_2H_5$, large amounts of PF_3 , and less volatile oils. PF_2HO and $PF_2OC_2H_5$ were recovered as a weak complex that was less volatile than either free species. In the case of alcohols the second reaction between PF_2HO and PF_2OR is somewhat slow so that small amounts of PF_2HO and PF_2OR can be recovered. The PF_3 and oils are formed from the interaction of PF_2HO and PF_2OR . This reaction was confirmed by mixing PF_2HO and PF_2OR directly (results given in a later section).

The reaction of HNR₂ with F_2POPF_2 is similar to the reactions of alcohols and is described by HNR₂ + $F_2POPF_2 \rightarrow F_2HPO + F_2PNR_2$. As in the case of alcohols, a second reaction then occurs but is more rapid and goes to completion. The products of the second reaction include PF_3 , F_2POPF_2 , and NR_2H_2 +HFPO₂⁻. The sequence was confirmed by allowing PF_2HO and PF_2NR_2 to react directly and is discussed in a later section.

2. Reaction of F_2POPF_2 with N_2F_4 .—A violent reaction occurred between F_2POPF_2 and N_2F_4 . The reaction can be described as a fluorination of F_2POPF_2 by N_2F_4 , a commonly observed reaction of N_2F_4 .⁵ The products included PF_5 , PF_3O , and N_2 . The reaction is $F_2POPF_2 + N_2F_4 \rightarrow PF_5 + PF_3O + N_2$.

It is interesting to note that an unidentified, bright red material was observed during separation of the products at low temperature. It was very volatile and almost completely disappeared on warming. Some type of free radical or complex may be responsible for the color.

3. Reactions of PF_2HO with $XN(CH_3)_2$ (X = H, CH₃, PF_2).—Difluorophosphine oxide reacts immediately with amines to form solids or oils and PF_3 . The solids and oils were identified by nmr as the amine salts of monofluorophosphorous acid; thus the reaction can be described as

$$2PF_{2}HO + or \\ N(CH_{3})_{2}H \\ N(CH_{3})_{2}H \\ N(CH_{3})_{2}H^{+} \\ N(CH_{3})_{2}H_{2}^{+}$$

In the reaction mentioned earlier between PF_2OPF_2 and $HN(CH_3)_2$, F_2HPO and $PF_2N(CH_3)_2$ were the expected products. Since they were not observed, it was concluded that these two molecules must react to form

(5) C. B. Colburn, Advan. Fluorine Chem., 8, 92 (1963).

new products. In a separate experiment, it was found that PF_2HO and $PF_2N(CH_3)_2$ react vigorously at room temperature. Although the reaction was complicated by side reactions, the interaction of PF_2HO and $PF_2N(CH_3)_2$ can be described by the equation

 $3PF_2HO + PF_2N(CH_3)_2 \longrightarrow PF_3 + F_2POPF_2 +$

NR₂H₂+HFPO₂-

 $NR_2H_2^+HFPO_2^-$ was identified by its phosphorus, fluorine, and proton spectra, which were identical with the spectra observed from the reaction of F_2POPF_2 with HNR_2 and the reaction of PF_2HO with HNR_2 .

The ³¹P nmr spectrum of NR₂H₂+HFPO₂⁻ consisted of a doublet of doublets. The signal was first split into doublets from coupling with the fluorines ($J_{PF} = 976$ cps, δ (relative to orthophosphoric acid) 1.4 ppm); each member of the doublet was further split into doublets by the proton attached to the phosphorus ($J_{PH} =$ 678 cps). The ¹⁹F nmr tracing showed the expected doublets of doublets. The signal first split by the phosphorus into a doublet ($J_{PF} = 986$ cps; δ (relative to CFCl₃) 54 ppm). Each member of the doublet was further split into doublets by the proton on the phosphorus ($J_{HPF} = 125$ cps).

The proton spectrum showed unequivocally that the molecule was NR₂H₂+HFPO₂-. It consisted of three sets of peaks with a relative area of 1:2:6. The first set with an area of 1 was a doublet of doublets and was assigned to the proton attached directly to the phosphorus. The signal was first split by the phosphorus into doublets ($J_{\rm PH} = 681$ cps, δ (relative to TMS) -6.7ppm). Interaction with fluorines then further split each doublet into doublets ($J_{\text{FPH}} = 122 \text{ cps}$). A broad peak (δ (relative to TMS) -8.9 ppm) with an area of 2 was assigned to the protons attached to the nitrogen directly. The third set of peaks with an area of 6 was found to be a triplet. The peak (δ (relative to TMS) -2.2 ppm) was assigned to the protons attached to the carbon in the amine. The triplet resulted from coupling with the N-H protons $(J_{\text{HNCH}} = 5.2 \text{ cps})$.

The ¹⁹F nmr spectrum for $N(CH_3)_3H^+HFPO_2^-$ was identical with that for the $NH_2(CH_3)_2^+$ salt, except for slight changes in chemical shifts and coupling constants. The proton spectrum not only showed the expected changes (coupling constants, chemical shifts, and relative areas), but a loss of coupling was observed for the HCNH interaction. Coupling constants and chemical shifts are summarized in Table I for $NH_2(CH_3)_2^+$. HFPO₂⁻ and $NH(CH_3)_3^+HFPO_2^-$.

TABLE I		
NMR DATA FOR HFPO2 ⁻ SALTS		
$NR_{2}H_{2}^{+}$	NR3H+	
986,ª 976°	961ª	
681, ^b 678°	690	
125,ª 122 ^b	129,ª 123 ^b	
5.2^{b}		
1.4		
54	54	
-2.2	-2.5	
-8.9	-11.5	
-6.7	6.5	
	TABLE I TA FOR HFPO ₂ - SA $-NR_2H_2 + $	

^a From ¹⁹F spectra. ^b From ¹H spectra. ^c From ³¹P spectra.

4. Reactions of PF_2HO with PF_2OR .—In the reaction of F_2POPF_2 and alcohols, it was observed that the predicted products (PF_2OR and PF_2HO) could not be completely isolated. From this observation, it was concluded that PF_2OR and PF_2HO underwent interaction to give new products. A mixture of PF_2OCH_3 and PF_2HO was found to react rapidly in the liquid phase at 25° to give PF_3 , $HFPO_2H$, and $HFPO_2CH_3$. The products can be explained in terms of two competing reactions

> $2HF_2PO \longrightarrow PF_3 + HFPO_2H$ $HF_2PO + PF_2OCH_3 \longrightarrow PF_3 + HFPO_2CH_3$

The first suggested reaction is well established in the chemistry of F_2HPO . The second is supported by the following facts.

The fluorine-19 nmr initially showed PF_2HO and PF_2OCH_3 . Almost immediately, new peaks could be observed in the spectrum. A low-field doublet which could be assigned to PF_3 appeared first. Two sets of peaks, each a doublet of doublets, then began appearing. One set was situated on the low side of PF_2HO and the other on the high side. The low-side doublets could be assigned to $HFPO_2H$, while the upfield side was assigned to $HFPO_2CH_3$.

The proton nmr of a different sample confirmed the ¹⁹F nmr. Initially, all peaks could be assigned to PF_2HO and PF_2OCH_3 (if a weak complex is formed, the gross features of the complex must remain similar to the free species). Gradually the triplet of doublets of PF₂HO was replaced by two sets of doublets of doublets and a singlet. In this case, a larger ratio of PF_2OCH_3 had been used so that HFPO₂CH₃ would be formed in greater abundance. The lower field doublet of doublets was assigned to HFPO₂CH₃, while the upfield doublet of doublets was assigned to HFPO₂H. The doublets result from the proton attached to phosphorus in $HFPO_2H$ and $HFPO_2CH_3$, while the singlet is the result of the proton attached to the oxygen in HFPO₂H. The spectrum of the CH₃ protons also shows changes with time. Beginning with the doublet of PF2OCH3 (POCH coupling), a new doublet slowly appears, resulting from P-O-C-H coupling in HFPO₂CH₃. After about 1 hr, a doublet of doublets appeared, probably due to decomposition or reaction of HFPO₂CH₃. A summary of coupling constants and chemical shifts is given for $HFPO_2CH_3$ in Table II.

COUPLING CONSTANTS AND	CHEMICAL SHIFTS FOR HFPO ₂ CH ₃
$J_{\rm PF} = 1056 \ {\rm cps}$	$\delta_{\rm F}({\rm CFCl_3})$ 67.8 ppm
$J_{\rm PH} = 772 \ {\rm cps}$	$\delta_{\rm PH}({ m TMS}) = 6.8 \ { m ppm}$
$J_{POCH} = 12 \text{ cps}$	$\delta_{CH}(TMS) - 3.7 \text{ ppm}$
$J_{\rm HPF} = 115 {\rm cps}$	

5. Reactions of PF_2HO with BF_3 .— PF_2HO was found to form a weak complex with boron trifluoride. At room temperature in the gaseous state, the complex was completely dissociated. At -78° in the solid state, no dissociation was observed.

The ¹H, ³¹P, ¹⁹F, and ¹¹B nmr spectra were used to

confirm the presence of a complex. Although the structural features of each spectrum of the complex remained the same as the free species, several large changes in coupling constants occurred. The ³¹P nmr spectrum of the complex $PF_2HO \cdot BF_3$ showed a doublet of triplets. The signal was first split by two fluorines $(J_{\rm PF} = 1155 \text{ cps}, \delta(\text{relative to } H_3 PO_4) - 2.9 \text{ ppm})$ into a triplet, and then further coupling with the proton split each member of the triplet into doublets $(J_{\rm PH} =$ 990 cps). The ¹⁹F spectrum showed a pair of doublets and a singlet. The pair of doublets was assigned to the fluorine attached to phosphorus. The signal was first split by the phosphorus to give a doublet $(J_{PF} = 1150)$ cps, δ (relative to CFCl₃) 73.5 ppm); each member of the doublet was then further split by the proton $(J_{HPF} = 96)$ cps). The singlet observed in the fluorine nmr was assigned to the fluorines attached to the boron (δ (relative to $CFCl_3$) 143 ppm). The proton nmr tracing was found to be a triplet of doublets. The signal was first split by the phosphorus into a doublet $(J_{\rm PH} = 980 \text{ cps})$ δ (relative to TMS) -7.6 ppm), and each member of the doublet was further split into triplets by coupling with the fluorines $(J_{\text{FPH}} = 97 \text{ cps}).$

Because of earlier evidence that suggested that the decomposition of PF_2HO could be related to the association present, it was hoped that diffuorophosphine oxide could be stabilized by the addition of a BF_3 group to the oxygen. On coordination to the oxygen, the associated $(PF_2HO)_n$ species should be broken.

When a mixture of PF_2HO and BF_3 is allowed to sit at room temperature for long periods (~24 hr),⁶ the diffuorophosphine oxide decomposes in a fashion similar to that observed for the free ligand.³ The decomposition of the adduct can be explained in terms of (1) dissociation of the adduct, (2) decomposition of PF_2HO , and (3) interaction of the product with BF_3 . The equations are summarized as

 $2PF_{2}HOBF_{3} \longrightarrow 2PF_{2}HO + 2BF_{3}$ $2PF_{2}HO \longrightarrow PF_{3} + HFPO_{2}H$ $HFPO_{2}H + BF_{3} \longrightarrow HFPO_{2}H \cdot BF_{3}$

The overall reaction would then be

 $2PF_{2}HOBF_{3} \longrightarrow PF_{3} + BF_{3} + HFPO_{2}HBF_{3}$

HFPO₂HBF₃ was identified by its ¹H, ³¹P, and ¹⁹F nmr spectra. The phosphorus nmr spectrum showed a doublet ($J_{PF} = 1069$ cps, δ (relative to H₃PO₄) -6.1 ppm), each member of which was split into a doublet ($J_{PH} = 857$ cps). The ¹⁹F spectrum consisted of doublets ($J_{PF} = 1073$ cps, δ (relative to CFCl₃) 69.9 ppm) split into doublets ($J_{HPF} = 105$ cps) and a singlet from the BF fluorines (δ (relative to CFCl₃) 143.2 ppm). The proton spectrum showed a doublet ($J_{PH} = 856$ cps, δ (relative to TMS) -7.2 ppm) further split into doublets ($J_{HPF} = 102$ cps) and a singlet resulting from the OH proton (δ (relative to TMS) -9.9 ppm). Thus the nmr spectra indicate that the boron trifluoride is coordinated to the oxygen.

⁽⁶⁾ After 24 hr the sample was completely decomposed; shorter periods were not examined so that at present no comparison can be made with the decomposition of pure PF_2HO .

6. The Reactivity of PF_2HO .—The reaction of PF_2OR is very similar to the decomposition of PF_2HO . In the gas phase no detectable reaction was observed over an 8-hr period, but a rapid reaction (0.5–1 hr to completion) occurred in the liquid phase. Conditions were identical with those for the decomposition of PF_2HO .

Several factors can be considered when examining the reactivity of PF_2HO . Three sites are of interest in the molecule: (1) the phosphorus, (2) the oxygen, and (3) the proton. The phosphorus atom can accept an electron pair and assume a pentacoordinate geometry while the oxygen can donate an electron pair. Thus in phosphine oxides the possibility exists that the nucleophile (oxygen) of one molecule will interact with the electrophile (phosphorus) of another. The role of various substituents has not been completely clarified, but PF_2HO exhibits this type of association to the greatest extent.³ The chemistry is reflected in this association. Most of the reactions observed would result from attack on the associated chain, preferably at the end molecules.⁷

In the case of the observed reactions of PF2HO, all the reacting molecules (PF_2OCH_3 , $NR_{x-3}H_x$, and PF_2N - $(CH_3)_2$) can be considered as nucleophiles, while two can also be considered as electrophiles (PF2OCH3 and PF2- $N(CH_3)_2$). The reaction between amines and PF_2HO strongly suggests nucleophilic attack either at an end phosphorus in an associated chain or at a proton in the chain. In both cases, the end result would be removal of a proton to give $R_2NH_2+F_2PO^-$. The anion would react with HF2PO to give PF3 and HFPO2- via a process similar to that postulated for the decomposition of PF_2HO . The amine thus drives the decomposition of PF_2HO to completion. The intermediate F_2PO^- would resemble the anion (PF_2S^-) which Charlton and Cavell⁸ have tentatively identified in the reaction of trimethylamine with PF₂HS.

Because of the ability of PF_2HO to behave as either an electrophile or a nucleophile (as observed in the association of PF_2HO), the reactions with PF_2OCH_3 and $PF_2N(CH_3)_2$ are not as obvious. Either one or a combination of the two processes may be occurring. Work is now in process to clarify the interaction further.

Experimental Section

Apparatus.—Standard high-vacuum techniques were used throughout. Mass spectra were obtained on a Consolidated Electrodynamics Model 21-103B mass spectrometer at 70 eV.

Proton, boron, fluorine, and phosphorus nmr spectra were determined with a Varian Associates HR-100 nmr spectrometer at 100, 32.1, 94.4, and 40.4 MHz, respectively. Chemical shifts

were obtained by tube interchange. A negative chemical shift implies that the peak is downfield from the standard.

The infrared spectrum was determined with a Beckman IR-12 in a 75-mm gas cell equipped with CsI windows.

Materials.—PF₂HO was prepared from the reaction of HBr and F₂POPF₂.³ HN(CH₃)₂, N(CH₃)₃, and BF₃ were obtained from the Matheson Co. PF₂OCH₃ and PF₂N(CH₃)₂ were prepared by the reaction of PF₃ with CH₃OH and HN(CH₃)₂, respectively.⁹

Reaction of HN (CH₃)₂ with F₂POPF₂.—Dimethylamine (3.41 mmol) was condensed in a 500-ml reaction bulb with 1.71 mmol of F₂POPF₂. On warming the bulb, a reaction occurred with the formation of a solid. The volatile products were led through traps held at -78, -145, and -196° . A small amount of unidentified material at -78° was discarded. A 1.53-mmol sample of (CH₃)₂NPF₂ was found in the -145° trap and a 0.17-mmol sample of PF₃ remained in the -196° trap. The solid which remained in the reaction vessel decomposed on heating. Its decomposition products included H₂, PF₃, PH₃, (CH₃)₂NPF₂ (identified by ir spectrum and vapor pressure), and yellow solids. In a separate experiment PF₂HO was placed in an nmr tube with excess (CH₃)₂NPF₂; an immediate reaction took place as was evidenced by the formation of two phases. The nmr spectrum is considered in the Discussion.

Reaction of PF₂OPF₂ and CH₃OH.—In a typical reaction, 1.24 mmol of CH₃OH and 1.33 mmol of F₂POPF₂ were condensed in a 500-ml reaction flask and allowed to warm to room temperature. A reaction could be observed during the warming period. The products were then distilled through traps held at -78, -112, and -196° . A slightly volatile material was found in the -78° trap, while the -196° trap contained F₂POPF₂, PF₃, SiF₄, and PF₂OCH₃. A small amount of an unidentified oil remained in the flask. A second sample was prepared and the ¹⁹F mmr of the material held at -78° was obtained. The nmr spectrum showed that the material was a mixture containing PF₂HO, HFPO₂H, and small amounts of PF₂OCH₃. The products are considered in the Discussion.

Reaction of PF₂OPF₂ and C₂H₅OH.—Reaction of equal amounts of PF₂OPF₂ and C₂H₅OH gave results that were similar to those obtained with CH₃OH. During the distillation some product was held in a -30° trap. An ¹⁹F nmr of this material showed it to be PF₂OC₂H₅ and PF₂HO. This suggests that a weak adduct between the two is formed. The features of the nmr suggest that no pronounced structural changes have occurred in adduct formation.

Reaction of N₂F₄ with F₂POPF₂.-A 1.82-mmol amount of N₂F₄ and 1.93 mmol of F₂POPF₂ were condensed into a 500-ml reaction bulb and allowed to warm to room temperature. No immediate reaction occurred. The reactants were cooled to -196° and then rewarmed several times with no noticeable effect. While the reactants were being separated, a violent reaction occurred. A flame was observed in the bulb, and as the gases were produced from this flame, they were led through traps at -130 and -196° . Large amounts of noncondensable gas passed through the -196° trap (assumed to be N₂ and other products). The -130° trap contained a 1.4-mmol sample of PF₃O, while the -196° trap contained 1.6 mmol of PF₅ and an unidentified bright red solid. Unrecovered products could have been lost with the N₂. On warming and cooling the material at -196° , the color was greatly diminished although it never completely disappeared. Attempts to identify the colored material failed.

Reaction of PF₂HO and N(CH₃)₃.—A 2.40-mmol amount of N(CH₃)₃ was condensed into a reaction bulb with 4.40 mmol of PF₂HO. The mixture was allowed to warm slowly to room temperature, during which time a violent reaction occurred. After reaching room temperature, the volatile components were led through traps at -78 and -196° . A trace of unidentified material at -78° was discarded while 2.21 mmol of PF₃, identified by ir analysis and vapor pressure, was found at -196° . The PF₃ contained trace amounts of N(CH₃)₃. A white solid remained in the reaction bulb. From a mass balance, ¹⁹F, ¹H, and ³¹P (9) References described by R. Schmutzler, Advan. Fluorine Chem., **5**, 31 (1965).

⁽⁷⁾ In examining the characteristics of $(PF_2HO)_x$, the end molecules would appear to be most reactive. One end of the chain would be more nucleophilic while the other end would be more electrophilic than the original molecule. Thus attack would favor the ends of the chain. At present chain lengths are not known.

⁽⁸⁾ T. L. Charlton and R. G. Cavell, Inorg. Chem., 8, 2436 (1969).

nmr, and a comparison with the reaction of PF_2HO with PF_2N - $(CH_3)_2$ or $HN(CH_3)_2$, the solid was identified as $HN(CH_3)_3^+$ - $HFPO_2^-$. The reaction could be expressed by $2PF_2HO + N(CH_3)_3 \rightarrow PF_3 + NH(CH_3)_5^+FPHO_2^-$.

Reaction of PF₂HO and HN(CH₃)₂.—In a typical reaction, 6.55 mmol of PF₂HO and 2.76 mmol of HN(CH₃)₂ were condensed into an nmr tube connected to a 200-ml evacuated flask. The mixture was allowed to warm slowly to room temperature during which time a vigorous reaction occurred. After allowing the mixture to sit at room temperature for several minutes, the volatile components were led through traps held at -78, -140, and -196° . Nothing was found at -78° , while 0.20 mmol of (CH₃)₂NPF₂ was recovered at -140° . The -196° trap contained 2.46 mmol of PF₃. These species were identified by their vapor pressure and infrared spectra. An oil remaining in the nmr tube was dissolved in CHCl₃ and ¹⁹F, ¹H, and ³¹P nmr spectra showed the oil to be H₂N(CH₃)₂+HFPO₂⁻. Thus, the reaction could be described as 2PF₂HO + N(CH₃)₂H \rightarrow PF₃ + NH₂(CH₃)₂+HFPO₂⁻.

The Reaction of PF_2HO and $PF_2N(CH_3)_2$.—This interaction is complicated by the fact that the products react with the reactants and with each other. Best results were obtained when near stoichiometric amounts of the reactants were used. A 2.63-mmol sample of PF2N(CH3)2 was condensed with 6.02 mmol of PF2HO in a 100-ml reaction bulb. The mixture was slowly warmed to room temperature during which time a violent reaction occurred. After reaching room temperature, the volatile components of the reaction were led through traps held at -105, -140, and -196° . A 0.33-mmol sample of PF₂N- $(CH_3)_2$ was found at -105° , while the -196° trap contained 2.61 mmol of PF₃. A 2.12-mmol sample of F₂POPF₂ was recovered at -140° . These species were identified by their infrared spectra and vapor pressures. A white solid remained in the reaction vessel. The solid was identified by its nmr spectrum as $N(CH_3)_2H_2^+HFPO_2^-$.

In a separate experiment, PF_2HO and excess $PF_2N(CH_3)_2$ were condensed into an nmr tube and allowed to warm to room temperature. An immediate reaction occurred. The spectra are considered in the Discussion, and the reaction was identified as $3PF_2HO + PF_2N(CH_3)_2 \rightarrow PF_3 + F_2POPF_2 + N(CH_3)_2H_2^+ HFPO_2^-$.

Reaction of PF_2HO and PF_2OCH_3 .—A 1.22-mmol sample of PF_2HO was condensed with a 1.22-mmol sample of PF_2OCH_3 into a 500-ml reaction bulb and allowed to stand overnight at room temperature. After 8 hr in the gaseous phase, the products were distilled and found to contain only starting materials. After standing at 23° for 1 hr as a liquid in a smaller volume (75 ml) a reaction occurred. The products were passed through traps at -160 and -196°. The -196° trap contained 0.95 mmol of PF_3 while the -160° trap contained 0.61 mmol of PF_2OCH_3 . An oil remained in the reaction flask (the distillation was prob-

ably not allowed to run for a long enough period since the oils $HFPO_2H$ and $HFP(O)OCH_3$ should be slightly volatile). A mass balance showed that 1.22 mmol of PF_2HO and 0.61 mmol of PF_2OCH_3 were consumed. A 0.95-mmol sample of PF_3 was recovered. From a mass balance and the ¹⁹F and ¹H nmr spectra, which were discussed, the reaction is best stated by the two competing reactions

$$2PF_{2}HO \longrightarrow PF_{3} + PFHO_{2}H$$

$PF_{2}HO + PF_{2}OR \longrightarrow PF_{3} + PFHO_{2}R$

Reaction of PF₂HO with BF₃ and with B_2H_8 .—A 1.86-mmol sample of PF₂HO and 1.64 mmol of BF₃ were condensed into a 200-ml reaction bulb and allowed to warm to room temperature. At room temperature, the gaseous mixture was found by its infrared spectra to be BF₃ and PF₂HO. At lower temperatures, an adduct was formed between the two and was undissociated at about -78° . The adduct was identified by a mass balance and its ¹H, ¹⁹F, ³¹P, and B¹¹ nmr spectra to be PF₃HOBF₃.

In a similar experiment, B_2H_6 and PF_2HO were condensed into a reaction bulb. No adduct formation was observed with B_2H_6 at room temperature or at about -78° .

Decomposition of PF₂HOBF₃.—The above sample of PF₂HO (1.86 mmol) and BF₃ (1.64 mmol) was condensed into a 100-ml reaction bulb and allowed to remain at room temperature for 24 hr. During this period, a reaction occurred. The volatile components were led through traps held at -78 and -196° . A trace of PF₂HO was found at -78° and discarded. At -196° a 1.59-mmol mixture of PF₃ and BF₃ was found, while a nonvolatile oil remained in the reaction bulb. The BF₃-PF₃ mixture was condensed with H₂O (BF₃ rapidly reacted with H₂O). A 1.03-mmol sample of PF₃ was recovered from the water mixture. Thus, from the amount of BF₃ and PF₂HO consumed, the reaction can be described as $2PF_2HOBF_3 \rightarrow PF_3 + BF_3 + PFHO_2H \cdot BF_3$ (oil).

In a separate experiment, the decomposition was run in an nmr tube and the various nmr spectra were used to confirm the identity of the oil as $PFHO_2HBF_3$ (see Discussion).

In a similar experiment, 7.37 mmol of PF_2HO and 4.99 mmol of B_2H_6 were added to a 200-ml reaction bulb and allowed to sit at room temperature for 3 hr. The products were separated and all the B_2H_6 was recovered, while the PF_2HO had decomposed to PF_3 and $HFPO_2H$. A trace of H_2 and F_2POPF_2 was also observed in the products. Thus, the main reaction was only the decomposition of PF_2HO .

Acknowledgment.—Support of this work by The National Cancer Institute through Grant CA 0798904 is gratefully acknowledged. It is also a pleasure to thank Frank Parker for his assistance in obtaining several of the nmr spectra.